Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations

نویسندگان

  • Dong Han
  • Justin W. L. Wan
چکیده

We propose multigrid methods for solving the discrete algebraic equations arising from the discretization of the second order Hamilton–Jacobi–Bellman (HJB) and Hamilton– Jacobi–Bellman–Isaacs (HJBI) equations. We propose a damped-relaxation method as a smoother for multigrid. In contrast with the standard policy iteration, the proposed damped-relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the dampedrelaxation smoother effectively reduces high frequency error. For problems with large jumps in control, we develop restriction and interpolation methods to capture the jumps on the coarse grids as well as during the coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations

We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and HamiltonJacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped...

متن کامل

Second Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control

The paper is concerned with fully nonlinear second order Hamilton{Jacobi{Bellman{ Isaacs equations of elliptic type in separable Hilbert spaces which have unbounded rst and second order terms. The viscosity solution approach is adapted to the equations under consideration and the existence and uniqueness of viscosity solutions is proved. A stochastic optimal control problem driven by a paraboli...

متن کامل

Uniqueness Results for Second-Order Bellman--Isaacs Equations under Quadratic Growth Assumptions and Applications

In this paper, we prove a comparison result between semicontinuous viscosity sub and supersolutions growing at most quadratically of second-order degenerate parabolic Hamilton-Jacobi-Bellman and Isaacs equations. As an application, we characterize the value function of a finite horizon stochastic control problem with unbounded controls as the unique viscosity solution of the corresponding dynam...

متن کامل

Numerical Methods for Controlled Hamilton-Jacobi-Bellman PDEs in Finance

Many nonlinear option pricing problems can be formulated as optimal control problems, leading to Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. We show that such formulations are very convenient for developing monotone discretization methods which ensure convergence to the financially relevant solution, which in this case is the viscosity solution. In addition...

متن کامل

An iterative procedure to solve HJBI

In this paper, an iterative algorithm to solve a special class of Hamilton-JacobiBellman-Isaacs (HJBI) equations is proposed. By constructing two series of nonnegative functions, we replace the problem of solving an HJBI equation by the problem of solving a sequence of Hamilton-Jacobi-Bellman (HJB) equations whose solutions can be approximated recursively by existing methods. The local converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013